Hardware Description Languages

Modeling Structure
Elements of structural models

- Structural models describe a digital system as an interconnection of components
- An entity/architecture for each component must be independently available
Structural models

- Structural models are always “built” as follows:
 - Define the components used in the design
 - Describe the interconnection of these components

- Structural models can be easily generated (automatically) from schematics

- Structural descriptions can be nested
Hierarchy and Abstraction

- Structural modeling expresses the hierarchical nature of designs and provides a mechanism for the instantiation and reuse of cores
An example of structural modeling (1)
library ieee;
use ieee.std_logic_1164.all;

entity shiftcomp is port(
 Clk, Rst, Load: in std_logic;
 Init: in std_logic_vector(0 to 7);
 Test: in std_logic_vector(0 to 7);
 Limit: out std_logic);
end shiftcomp;
architecture structure of shiftcomp is

 component compare
 port(A, B: in std_logic_vector(0 to 7);
 EQ: out std_logic);
 end component;

 component shifter
 port(Clk, Rst, Load: in std_logic;
 Data: in std_logic_vector(0 to 7);
 Q: out std_logic_vector(0 to 7);
 Qb: out std_logic_vector(0 to 7));
 end component;

 signal Q_net: std_logic_vector(0 to 7);

begin

 COMP_1: compare port map (A => Q_net, B => Test,
 EQ => Limit);
 SHIFT_1: shifter port map (Clk => Clk, Rst => Rst,
 Load => Load, Data => Init,
 Q => Q_net, Qb => open);

end structure;
-- 8-bit barrel shifter

library ieee;
use ieee.std_logic_1164.all;

entity shifter is
 port(
 Clk, Rst, Load: in std_logic;
 Data: in std_logic_vector(0 to 7);
 Q: out std_logic_vector(0 to 7);
 Qb: out std_logic_vector(0 to 7)
);
end shifter;

architecture rtl of shifter is
begin
 reg: process(Rst,Clk)
 variable Qreg: std_logic_vector(0 to 7);
 begin
 if Rst = '1' then -- Async reset
 Qreg := "00000000";
 elsif rising_edge(Clk) then
 if Load = '1' then
 Qreg := Data;
 else
 Qreg := Qreg(1 to 7) & Qreg(0);
 end if;
 end if;
 Q <= Qreg;
 Qb <= not(Qreg);
 end process;
end rtl;
An example of structural modeling (5)

```vhdl
-- Eight-bit comparator

library ieee;
use ieee.std_logic_1164.all;

entity compare is
  port( A, B: in std_logic_vector(0 to 7);
       EQ  : out std_logic);
end compare;

architecture rtl of compare is
begin
  EQ <= '1' when (A = B) else '0';
end rtl;
```