The CMOS Inverter

Slides adapted from:

N. Weste, D. Harris, CMOS VLSI Design, © Addison-Wesley, 3/e, 2004
Outline

- Robustness of CMOS Inverter – The Static Behavior
 - Switching threshold
 - Noise Margins
- Performance of CMOS Inverter – Dynamic Behavior
 - Propagation delay
- Power Dissipation
 - Static dissipation
 - Dynamic dissipation
1. If the width of a transistor increases, the current will
 increase decrease not change
2. If the length of a transistor increases, the current will
 increase decrease not change
3. If the supply voltage of a chip increases, the maximum transistor current will
 increase decrease not change
4. If the width of a transistor increases, its gate capacitance will
 increase decrease not change
5. If the length of a transistor decreases, its gate capacitance will
 increase decrease not change
6. If the supply voltage of a chip increases, the gate capacitance of each
 transistor will
 increase decrease not change
1. If the width of a transistor increases, the current will **increase** decrease not change
2. If the length of a transistor increases, the current will **increase** decrease not change
3. If the supply voltage of a chip increases, the maximum transistor current will **increase** decrease not change
4. If the width of a transistor increases, its gate capacitance will **increase** decrease not change
5. If the length of a transistor increases, its gate capacitance will **increase** decrease not change
6. If the supply voltage of a chip increases, the gate capacitance of each transistor will **increase** decrease **not change**
CMOS Inverter Static Behavior: DC Analysis

FIG 2.23 A CMOS inverter
CMOS Inverter: DC Analysis

- DC Response: V_{out} vs. V_{in} for a gate
- Inverter
 - When $V_{in} = 0$ \Rightarrow $V_{out} = V_{DD}$
 - When $V_{in} = V_{DD}$ \Rightarrow $V_{out} = 0$
 - In between, V_{out} depends on transistor current
 - By KCL, must settle such that
 - $I_{dsn} = |I_{dsp}|$
 - We can solve equations
 - Graphical solution gives very good insight
Transistors operation regions

- Current depends on transistor’s operation region
- For what V_{in} and V_{out} are nMOS and pMOS in
 - Cutoff ?
 - Linear ?
 - Saturation ?
nMOS and pMOS operation

Table 2.2: Relationships between voltages for the three regions of operation of a CMOS inverter

<table>
<thead>
<tr>
<th></th>
<th>Cutoff</th>
<th>Linear</th>
<th>Saturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>nMOS</td>
<td>$V_{gn} < V_{tn}$</td>
<td>$V_{gn} > V_{tn}$</td>
<td>$V_{gn} > V_{tn}$</td>
</tr>
<tr>
<td></td>
<td>$V_{in} < V_{tn}$</td>
<td>$V_{in} > V_{in}$</td>
<td>$V_{in} > V_{tn}$</td>
</tr>
<tr>
<td></td>
<td>$V_{dsn} < V_{gn} - V_{tn}$</td>
<td>$V_{dsn} > V_{gn} - V_{tn}$</td>
<td>$V_{out} < V_{in} - V_{tn}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$V_{out} > V_{in} - V_{tn}$</td>
</tr>
<tr>
<td>pMOS</td>
<td>$V_{gp} > V_{tp}$</td>
<td>$V_{gp} < V_{tp}$</td>
<td>$V_{gp} < V_{tp}$</td>
</tr>
<tr>
<td></td>
<td>$V_{in} > V_{tp} + V_{DD}$</td>
<td>$V_{in} < V_{tp} + V_{DD}$</td>
<td>$V_{in} < V_{tp} + V_{DD}$</td>
</tr>
<tr>
<td></td>
<td>$V_{dsp} > V_{gp} - V_{tp}$</td>
<td>$V_{dsp} < V_{gp} - V_{tp}$</td>
<td>$V_{out} < V_{in} - V_{tp}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagrams

- **nMOS**:
 - $V_{gsn} = V_{in}$
 - $V_{dsn} = V_{out}$

- **pMOS**:
 - $V_{gsp} = V_{in} - V_{DD}$
 - $V_{dsp} = V_{out} - V_{DD}$
Graphical derivation of the inverter DC response: I-V Characteristics

- Make pMOS wider than nMOS such that $\beta_n = \beta_p$
- For simplicity let’s assume $V_{tn} = -V_{tp}$
Graphical derivation of the inverter DC response: current vs. $V_{\text{out}}, V_{\text{in}}$

- **Load Line Analysis:**
 - For a given V_{in}:
 - Plot I_{dsn}, I_{dsp} vs. V_{out}
 - V_{out} must be where $|\text{currents}|$ are equal
Graphical derivation of the inverter DC response: Load Line Analysis

- $V_{\text{in}} = 0$
Graphical derivation of the inverter DC response: Load Line Analysis

- $V_{in} = 0.2 \ V_{DD}$
Graphical derivation of the inverter DC response: Load Line Analysis

- $V_{in} = 0.4 \ V_{DD}$
Graphical derivation of the inverter DC response: Load Line Analysis

- $V_{in} = 0.6 \cdot V_{DD}$
Graphical derivation of the inverter DC response: Load Line Analysis

- $V_{in} = 0.8 \ V_{DD}$
Graphical derivation of the inverter DC response: Load Line Analysis

- $V_{in} = V_{DD}$
DC Transfer Curve

- Transcribe points onto V_{in} vs. V_{out} plot

In region C both transistors are in saturation. Ideal transistors are only in region C for $V_{\text{in}} = \frac{V_{DD}}{2}$ and the DC curve slope in C is $-\infty$.

The crossover point where $V_{\text{in}} = V_{\text{out}}$ is called input threshold.
DC transfer curve: operating regions

![Diagram](image)

FIG 2.23 A CMOS inverter

<table>
<thead>
<tr>
<th>Region</th>
<th>Condition</th>
<th>p-device</th>
<th>n-device</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$0 \leq V_{in} < V_{th}$</td>
<td>linear</td>
<td>cutoff</td>
<td>$V_{out} = V_{DD}$</td>
</tr>
<tr>
<td>B</td>
<td>$V_{th} \leq V_{in} < V_{DD}/2$</td>
<td>linear</td>
<td>saturated</td>
<td>$V_{out} > V_{DD}/2$</td>
</tr>
<tr>
<td>C</td>
<td>$V_{in} = V_{DD}/2$</td>
<td>saturated</td>
<td>saturated</td>
<td>V_{out} drops sharply</td>
</tr>
<tr>
<td>D</td>
<td>$V_{DD}/2 < V_{in} \leq V_{DD} -</td>
<td>V_{tp}</td>
<td>$</td>
<td>saturated</td>
</tr>
<tr>
<td>E</td>
<td>$V_{in} > V_{DD} -</td>
<td>V_{tp}</td>
<td>$</td>
<td>cutoff</td>
</tr>
</tbody>
</table>

Table 2.3 Summary of CMOS inverter operation
Beta Ratio

- If $\beta_p / \beta_n \neq 1$, switching point will move from $V_{DD}/2$
- Called skewed gate

FIG 2.26 Transfer characteristics of skewed inverters
Noise Margins

- How much noise can a gate input see before it does not recognize the input?
Noise Margins

- To maximize noise margins, select logic levels at unity gain point of DC transfer characteristic.

Figure 2.28 CMOS inverter noise margins
DC parameters

- Input switching threshold: V_{TH}
- Minimum high output voltage: V_{OH}
- Maximum low output voltage: V_{OL}
- Minimum HIGH input voltage: V_{IH}
- Maximum LOW input voltage: V_{IL}

Symmetry of the logic gate behavior
- Quality of the logic values provided by the gate
- Ability of the logic gate to tolerate noise

FIG 2.27 Noise margin definitions
CMOS Inverter Dynamic Behavior: AC Analysis

- DC analysis tells V_{out} if V_{in} is constant
- AC analysis tells $V_{out}(t)$ if $V_{in}(t)$ changes
 - Requires solving differential equations
- Input is usually considered to be a step or ramp from 0 to VDD or vice versa

FIG 2.23 A CMOS inverter

AC analysis = transient analysis = switching analysis = dynamic analysis
CMOS Inverter Dynamic Behavior: AC Analysis

- The switching characteristic (Vout(t) given Vin(t)) of a logic gate tells the speed at which the gate can operate.
- The switching speed of a logic gate can be measured in terms of the time required to charge and discharge a capacitive load.
- Critical paths.
- Timing Analyzers automatically finds the slowest paths in a logic design.
- Critical paths can be affected at various levels:
 - Architecture/ Microarchitecture Level
 - Logic Level
 - Circuit Level
 - Layout level
Inverter Step Response

- Find step response of inverter driving load cap

\[V_{in}(t) = u(t - t_0)V_{DD} \]

\[V_{out}(t < t_0) = V_{DD} \]

\[\frac{dV_{out}(t)}{dt} = -\frac{I_{dsn}(t)}{C_{load}} \]

\[I_{dsn}(t) = \begin{cases}
0 & t \leq t_0 \\
\frac{\beta}{2}(V_{DD} - V_t)^2 & V_{out} > V_{DD} - V_t \\
\beta \left(V_{DD} - V_t - \frac{V_{out}(t)}{2} \right) V_{out}(t) & V_{out} < V_{DD} - V_t
\end{cases} \]
Delay Parameters

- **t_r:** rise time
 - From output crossing 0.2 V_{DD} to 0.8 V_{DD}

- **t_f:** fall time
 - From output crossing 0.8 V_{DD} to 0.2 V_{DD}

- **t_{pdr}: rising propagation delay**
 - From input crossing $V_{DD}/2$ to rising output crossing $V_{DD}/2$

- **t_{pdf}: falling propagation delay**
 - From input crossing $V_{DD}/2$ to falling output crossing $V_{DD}/2$

- **t_{pd}: average propagation delay**
 - $t_{pd} = (t_{pdr} + t_{pdf})/2$
Delay Parameters cont.

- t_r, t_f
 - Tells how steep can be the waveform that the logic gate is able to provide at its output

- t_{pdr}, t_{pdf}
 - Input-to-output delay of the logic gate (time needed for the output to respond to a change in the input)
Factors affecting delay

- $C_{LOAD} = C_{\text{intrinsic}} + C_{\text{extrinsic}}$
 - intrinsic capacitance
 (parasitic capacitance of the driving logic gate)
 - extrinsic capacitance
 (interconnect capacitance + capacitance of the stage driven)

- Slope of the input waveform
 - As the voltage on the gate terminal of a transistor change so does its capacitance
Simulated Inverter Delay

- Solving differential equations by hand is too hard
- SPICE simulator solves the equations numerically
 - Uses more accurate I-V models too!
- But simulations take time to write
- It is important to develop back of the envelope techniques to rapidly estimate delay, understand its origin, and figure out how it can be reduced
Delay Estimation

- We would like to be able to easily estimate delay
 - Not as accurate as simulation
 - But easier to ask “What if ?”
- The step response usually looks like a 1^{st} order RC response with a decaying exponential.
- Use RC delay models to estimate delay
 - $C =$ total capacitance on output node
 - Use effective resistance R
 - So that $t_{pd} = RC$
- Characterize transistors by finding their effective R
 - Depends on average current as gate switches
RC Delay Models

- Use equivalent circuits for MOS transistors
 - Ideal switch + capacitance and ON resistance
 - Unit nMOS has resistance R, capacitance C
 - Unit pMOS has resistance $2R$, capacitance C
- Capacitance proportional to width
- Resistance inversely proportional to width
Power Dissipation

- Static CMOS gates are very power-efficient because they dissipate nearly zero power while idle.

- Instantaneous power: \(P = i_{DD}(t) \cdot V_{DD} \)

- Energy consumed: \(E = \int_{0}^{T} i_{DD} \cdot V_{DD} \, dt \)

- Average power: \(P_{avg} = \frac{1}{T} \int_{0}^{T} i_{DD} \cdot V_{DD} \, dt \)
Power Dissipation

- Power dissipation in CMOS circuits comes from two components:
 - **Static Dissipation**
 - Subthreshold conduction
 - Tunneling current
 - Leakage through reverse biased diodes
 - **Dynamic Dissipation**
 - Charging and discharging (switching) of the load capacitance
 - “Short-Circuit” current while both pMOS and nMOS networks are partially ON
Static Dissipation

- **OFF** transistors still conduct a small amount of current:
 - Sub threshold current
 - Current through reverse biased diodes
 - Gate tunneling current

- In 130 nm processes and beyond leakage is becoming a major design issue and vendors now provide leakage data (often in the form of nA/μm of gate length)

\[P_{\text{static}} = V_{\text{DD}} \cdot I_{\text{leakage}} \]
Dynamic Dissipation

\[P_{\text{dynamic}} = P_{\text{sw}} + P_{\text{sc}} = \frac{1}{T} \int_{0}^{T} i_{\text{DD}}(t) \cdot V_{\text{DD}} \, dt = \frac{V_{\text{DD}}}{T} \int_{0}^{T} i_{\text{DD}}(t) \, dt \]

Assuming a logic gate goes through one complete charge/discharge cycle every clock cycle:

\[P_{\text{sw}} = C \cdot V_{\text{DD}}^2 \cdot f_{\text{clock}} \]

Because most gates do not switch every clock cycle, we introduce a corrective activity factor \(\alpha \):

\[P_{\text{sw}} = \alpha \cdot C \cdot V_{\text{DD}}^2 \cdot f_{\text{clock}} \]

A clock has \(\alpha = 1 \) because it rises and falls every cycle, but most data have a maximum activity factor \(\alpha = 0.5 \) because they transition only once every cycle.
Dynamic Dissipation

- Because, input rise/fall time is greater than zero, both nMOS and pMOS will be ON for a short period of time (while the input is between V_{tn} and $V_{DD}-|V_{tp}|$)
- This results in a “short-circuit” current pulse from VDD to GND
- Typically this increases power dissipation by about 10%
Low Power Design

- Power Dissipation is a major problem !!!

Dynamic Power Reduction

- Decrease activity factor
 - Selective clock gating
 - Drawback: if the system transitions rapidly from an idle mode to a fully active mode a large di/dt spike will occur
- Decrease switching capacitance
 - Small transistors
 - Careful floor planning to reduce interconnect
- Decrease power supply
 - Adjust voltage depending on the operating mode
- Decrease operating frequency
Static Power Reduction

- Subthreshold current can be reduced by increasing V_t
- Selective application of multiple threshold (low-V_t transistors on critical paths, high V_t transistors on other paths)
- Control V_t through the body voltage
Turn off the power supply entirely. MTCMOS circuits use low V_t transistors for computation and high V_t transistor as a switch to disconnect the power supply during idle mode.

The leakage through two series OFF transistor is much lower (10-20x) than that of a single transistor (stack effect).