We’ll admit it. We’ve been fascinated by the power of Gail Gibbons’s nonfiction books for years. As teachers and researchers, we’ve read *Sunken Treasure* (1988) aloud and watched as young first-graders repeatedly select that book from the classroom library during free-choice time (Donovan, Smolkin, & Lomax, 2000). As teacher educators, we’ve modeled many reading- and writing-related lessons for our university students with Gibbons’s books, touting them as exemplars of the nonfiction genre, or information books. In our research, we’ve listened to parents and preschoolers across three...

Looking Closely at a Science Trade Book: Gail Gibbons and Multimodal Literacy
Laura B. Smolkin
Carol A. Donovan
An in-depth look at illustrations and at the creative processes of author/illustrators can strengthen students’ understandings of nonfiction.
We began thinking about an interview with Gibbons when teacher after teacher in our science trade book selection study called our attention to her craft.

Gail Gibbons actually began her book-writing career at the advanced age of four years. That first work, four pages long, was not an information book; instead, Gibbons characterized it as a wordless book in which a child vanishes into a mud puddle. As a curious seven-year-old, Gibbons explained in an interview, she tore a clock apart to understand how it worked inside and then attempted to reassemble it (“Interview,” 2003, para. 2). In her thirties, she returned to that fascination to create the first of her distinctive nonfiction works, *Clocks and How They Go* (Gibbons, 1979), for which she received one of many awards in her career, this one from the American Institute of Graphic Arts.

That award was particularly appropriate because Gibbons had majored in graphic design at the University of Illinois, and then worked in television graphics for 11 years. She brought her unique skills to the world of nonfiction at the suggestion of a friend, a children’s book consultant, who informed Gibbons that most nonfiction works were “hideous . . . black and white stick figures . . . boring,” and asked if she had ever considered doing nonfiction books. Her husband seconded the idea, reminding her of the colorful, exciting graphics she had produced for television shows such as “Nightly News” and “Saturday Night Live.” A meeting with an editor at Harper clinched the deal, and Gibbons produced *Clocks and How They Go* (1979). With the publication of that book, Gibbons felt “like I was at home, finally. You know, I felt like this was what I really want to do. I’m enjoying doing colorful, nonfiction books” (“Interview,” 2003, para. 16-19). And, as winner of the *Washington Post/Children’s Book Guild Award* for her overall contribution to children’s nonfiction literature, Gibbons clearly has others enjoying and appreciating what she does as well.

The Reactions of Teachers to Gail Gibbons’s Nonfiction

We began thinking about an interview with Gibbons when teacher after teacher in our science trade book selection study called our attention to her craft. In that study, we asked 10 elementary school teachers—two each from first through fifth grades—to select books they felt would enhance their science curriculum, and to tell us their reasons for their selections (Donovan & Smolkin, 2001). All of the participating teachers worked in schools serving rural, predominantly European American children from low- to middle-class socioeconomic backgrounds. All had more than five years of teaching experience, and all informed us that they already included trade books, reading, and writing in their science instruction, so we listened carefully. Ann, a first-grade teacher, spoke most enthusiastically. “The author,” she told us, “is great, the diagrams, information, and maps are excellent!” Christie, one of the third-grade teachers, indicated that *Planet Earth* had particularly good pictures to support the text’s information. Connie, the other third-grade teacher, explained that *Planet Earth* made a wonderful read-aloud and that children would be able to read...
it to themselves. Diane, one of the fourth-grade teachers, informed us that she’d selected the book because “its illustrations and diagrams make a great extra resource.” “Gail Gibbons,” commented Donna, the other fourth-grade teacher, “is an excellent author and the information is easy to understand.” Ellen, one of the fifth-grade teachers, informed us that *Planet Earth* was “attractive and informative,” while Eva, the other fifth-grade teacher, indicated that it was a book her students would enjoy. One thing was very clear—the teachers selecting this book definitely appreciated *Planet Earth* for its verbal and visual content. The book was full of information; the information was easy to understand; the pictures, diagrams, and maps were seen as extra resources for children’s learning. We wanted to learn more about the process that had produced this text and decided to interview Gail Gibbons about each of these aspects of her craft.

LEARNING ABOUT ** *PLANET EARTH* **FROM GAIL GIBBONS

Before contacting Gibbons, we created interview questions that would address our key interests—How did she make her verbal text easy to understand, yet informative? How did she create the powerful visual aspects of the book? Many of us invoke authors, their habits, and their craft to guide children in their own writing (Fletcher & Portalupi, 1998; Ohanian, 1997; Ray, 1999; Wall, 2000). For that reason, we’ve organized Gibbons’s responses to our questions into categories supporting the writing of nonfiction in the elementary classroom.

Preparing to Write. No matter how we conceptualize the writing process, writers go through a period of planning before they begin to write (Berkenkotter, 1983; Flower & Hayes, 1981; Graves, 1975). “I have to start with the idea,” Gibbons explained. “I have to be excited about the concept or I won’t do it. A lot of my ideas come from when I go to schools and talk to kids. I feel like I’m writing for kids so I want their feedback. So that’s part of my writing process, getting feedback from kids about what they want.”

Once she has an idea for a book, Gibbons collects information on that topic. “When I have something I want to write, I have a folio, and anything I see on that topic, I stick it in that folio.” This process of gathering resources goes on for quite a while because Gibbons is usually working on several books simultaneously. At this stage of her work, she also thinks about which experts she will consult to make sure that the information in her book is accurate, a critical issue in all nonfiction books (Huck, Kiefer, Hepler, & Hickman, 2004).

Gibbons, as an author–illustrator, draws quite heavily on her graphic artist past. Conceptualizing her text, she does so in terms of its visual presentation. “Since I’m an artist, I visualize while I’m writing the text. I do an outline, 30 pages. I start doing the outline to see how I want the book to pace. I have a skeleton, but I’m figuring out where the text should break when you turn the page.” This comment reminded us of the importance of visualization and drawing for children’s writing, particularly in prewriting efforts (Golden, 1994; Norris, Reichard, & Mokhtari, 1997).

Putting Pencil to Paper—Starting a Draft. Following her planning, Gibbons begins to work on the actual text. “Then I do the writing. I write in long hand. I’m tactile because I’m an artist. Then I type, and while I’m typing, I’ll make changes. My first draft is usually pretty bad. I’m nervous about how I’m going to get all that information into those 32 pages,” the standard length of most picture books.

“When I won the Washington Post award,” she mused, “they had found this quotation of mine somewhere. ‘Writing is like putting a puzzle together’ because you don’t know how it’s going to turn out. The hardest part is the first five pages; getting the mood going is really difficult. Once I have a structure, it’s easier.”

Writing with Audience in Mind. Knowing that even first graders can consider audiences in their writing (Wollman-Bonilla, 2001), we asked Gibbons to describe her approach to writing for her child audience.

“When I write,” she explained, “I write to that child as if the child is smart. I do not write down to them. I write to them as an equal. And if they have questions, they can ask them. I will not write down to children. “I don’t like a book with vocabulary at the back. It says the child isn’t smart enough. Kids can ask or they can have enough curiosity to look it up.” This remark let us know that Gibbons expects children to have questions about the information she presents. She brings her own awareness of herself as a curious child and her many encounters with children in schools to her view of her audience.

Revising the Text: Determining Importance. Many teachers face challenges when encouraging children to revise their compositions. When we asked Gibbons about this part of her
Looking Closely at a Science Trade Book

writing process, she spoke about the sounds of wording and the organization of text material. “My first draft sounds encyclopedia-like. I make the changes with my editor on my manuscript and then it goes back to the publisher.” This back-and-forth process “happens usually about four or five times. I rewrite many times. I don’t like what I write the first time. I write so it doesn’t sound choppy. It’s a process of rewriting many, many times. One book I rewrote 22 times. I want the text to flow.

“I usually overwrite at first. I am picking out what I think is the most important information and deleting what is excess. In almost all my books, I’ll have extra information on page 32. I call it my page 32. I put stuff that was very interesting but made the text too long at the back of the book. Or, I’ll put something there that should be highlighted by itself because it was so interesting. Sometimes these interesting facts would get lost in the text.”

Checking for Accurate Information. Of particular importance in nonfiction writing is accuracy of information; authors of children’s literature textbooks have commented on the importance of distinguishing fact and theory (Huck, Kiefer, Hepler, & Hickman, 2004). Gibbons is well known for her strengths in this area; in Planet Earth, she stresses the uncertainties of science through phrases such as “Some scientists think . . .” (1995, unpaged). We asked her about this phrase.

“I wrote it because not everybody believes the same theory. Like when I was doing my Dinosaur book (1987). There were a number of different theories about what became of the dinosaurs. And it’s not accurate to simply present one theory. When I did Planet Earth, I was dealing with three geologists. And they were battling about the formation of the continents over the phone during our group conference call. And so I wrote, ‘Some scientists think.’”

To let her readers know she has worked hard to be accurate with her facts, Gibbons “always puts a thank you for every person who helped me.” In the case of Planet Earth, Gibbons acknowledged “the ones who were fighting about Pangaea.” On her dedication page in Planet Earth, Gibbons thanked Nancy Keller, an earth science teacher, and Stephen F. Wright and Stephen S. Howe of the University of Vermont’s geology department “for their careful reading of the text of this book” (1995, unpaged).

Students can learn to see the world more analytically by creating Digital Collages. A Digital Collage consists of: 1) a one-page/computer screen assemblage of digital photographs of a theme, topic, or object taken from various perspectives; 2) colorful text labels that use various fonts and lines to connect or highlight digital photographs; and 3) text that describes or explains the topic.

• Explore the author’s Web site, in this case, the Web site of Gail Gibbons <http://www.gailgibbons.com/index.htm> to gather some information about the author.
• Display an assortment of books by the author. View the illustrations from 3 or 4 books and ask students to talk about what they notice (e.g., different views of the same object, lassos or balloons around important phrases, labels, cross-sectional views, partitioned pages, illustrations that provide information not included in the text, framed lines of various colors around connected aspects of illustrations, text that describes). Explain that her illustrations help readers “see” the world in new ways to learn more about the topic and that they will use some of the same techniques to make a computer illustration, a Digital Collage.
• Demonstrate how to make a Digital Collage and ask students to follow the same steps with an object they have selected from the classroom. First, take several photos of an object from different perspectives (e.g., a shoe from the top, bottom, left side, front, back. Second, import the photos into creativity software. Third, copy, crop, and paste the photographs into a collage. Fourth, label the photographs and frame with lines of different colors. If there’s room on the screen, diagram parts of a shoe on a side view picture. Fifth, write text that explains who owns the shoes and where they wear them (in other words, information not included in the illustrations).

Learning to “see” the world through analytical eyes is a skill that will help students better comprehend the visual images they encounter in various types of text. Additionally, creating Digital Collages will enable them to represent their ideas in visually powerful ways.

—Linda D. Labbo
Conveying Information Visually (with a Touch of Text). Clearly, the pictures in her books are very important to her as a graphic artist. They matter not just in terms of maintaining children’s interest (although she definitely does care about this a great deal; she would never write a “boring” book!) but also in terms of presenting the science of her books accurately. She makes careful decisions about what should be visually represented and how.

• Deciding What to Illustrate

We began our discussion of Gibbons’s graphics by asking how she decided which illustrations she would create. “When I’m writing,” she explained, “I’m seeing what I want on that page. The text that I’m writing is also what I’m seeing. And I know that the pictures will show stuff that I won’t have to say in the text. They carry information that I won’t have to write about. And I don’t want to put that information down on paper if the picture will be explaining it. From a children’s book author/illustrator perspective, to duplicate in pictures and words is a waste of space.” We found these comments to be particularly meaningful for teachers who include writing in their content areas. Young writers of science and history can productively consider which types of information should be represented and which modality—text or picture—will best serve their audiences’ understanding.

• Deciding upon the Appropriate Graphic Form

With so many possible representational forms available for conveying information (Kress & van Leeuwen, 1996), we were curious to know how Gibbons made her choices. “This is also part of my visualization process. If I need an inset, perhaps a cutaway, to explain something better, then I’ll use it. If I don’t, I won’t.” Like in my Cats book (1996), the teeth of the cat . . . I couldn’t really do that, show the cat’s teeth, without doing a bigger visual. I would do an inset; I don’t want to do a whole page of the teeth of the cat.

“I want the book to look interesting. I do insets for science reasons and to show things more clearly. That’s why I love being an illustrator. Photoessays, you’re limited to what you can show. To take a photo, there’s a lot of detail. A photo inside the mouth of a cat would show too much, not just the teeth. If you can simplify, it’s much easier for children to see than in a photograph.” These comments made us realize that illustration technique matters and how it is determined could be viewed as Gibbons’s perceptual bias.

Sharing the Book in the Classroom.

Given the great importance of audience to Gail Gibbons, we wondered how she envisioned her books in the hands of readers. We asked if her books should be read by presenting the pictures or the text first. “I just do the book,” she commented. “Readers can do it either way. Sometimes when I read to classes, it might depend on the mood that I’m in. With really young kids, I’ll read the text and talk about the picture. For them, I always read the labels. And children ask me questions about the labels. With older children, I’ll just hold the book out to the side. I don’t explain; they can see the picture.”

We then asked Gibbons about the purpose of Planet Earth; what was it she hoped children would take from a reading of that work. “A lot of my books,” Gibbons mused, “end up being sort of ecological. And so many see Earth as an inanimate object, and it’s not; it’s alive. The more I got into the book, the more I respected our planet. It’s like people building [a house] on a clay cliff, and they get upset because it falls down, but that’s supposed to happen. I wanted to explain how

These text types operate in a multimodal fashion, meaning that scientists do not rely solely upon words to communicate.

write about. And I don’t want to put that information down on paper if the picture will be explaining it. From a children’s book author/illustrator perspective, to duplicate in pictures and words is a waste of space.” We found these comments to be particularly meaningful for teachers who include writing in their content areas. Young writers of science and history can productively consider which types of information should be represented and which modality—text or picture—will best serve their audiences’ understanding.

• Deciding upon the Appropriate Graphic Form

With so many possible representational forms available for conveying information (Kress & van Leeuwen, 1996), we were curious to know how Gibbons made her choices. “This is also part of my visualization process. If I need an inset, perhaps a cutaway, to explain something better, then I’ll use it. If I don’t, I won’t.” Like in my Cats book (1996), the teeth of the cat . . . I couldn’t really do that, show the cat’s teeth, without doing a bigger visual. I would do an inset; I don’t want to do a whole page of the teeth of the cat.

“I want the book to look interesting. I do insets for science reasons and to show things more clearly. That’s why I love being an illustrator. Photoessays, you’re limited to what you can show. To take a photo, there’s a lot of detail. A photo inside the mouth of a cat would show too much, not just the teeth. If you can simplify, it’s much easier for children to see than in a photograph.” These comments made us realize that illustration technique matters and how it is determined could be viewed as Gibbons’s perceptual bias.

Sharing the Book in the Classroom.

Given the great importance of audience to Gail Gibbons, we wondered how she envisioned her books in the hands of readers. We asked if her books should be read by presenting the pictures or the text first. “I just do the book,” she commented. “Readers can do it either way. Sometimes when I read to classes, it might depend on the mood that I’m in. With really young kids, I’ll read the text and talk about the picture. For them, I always read the labels. And children ask me questions about the labels. With older children, I’ll just hold the book out to the side. I don’t explain; they can see the picture.”

We then asked Gibbons about the purpose of Planet Earth; what was it she hoped children would take from a reading of that work. “A lot of my books,” Gibbons mused, “end up being sort of ecological. And so many see Earth as an inanimate object, and it’s not; it’s alive. The more I got into the book, the more I respected our planet. It’s like people building [a house] on a clay cliff, and they get upset because it falls down, but that’s supposed to happen. I wanted to explain how
Looking Closely at a Science Trade Book

plates move and how alive Planet Earth is. I want children to learn how big our world is and how wonderful it is and how many parts there are to it. And that’s it.”

INSIDE PLANET EARTH

We now felt we had a much firmer understanding of the creative processes that gave birth to this respected authentic text. Our next step was to look more intensively at the book itself, to understand better what Gibbons had been saying about the relationship of pictures and text. We were guided in these analyses by the work of systemic functional linguists and semioticians (Hasan, 1984; Kress & van Leeuwen, 1996; Lemke, 1998; Pappas, 1986). After examining professional science texts, Lemke (1998) suggested these text types operate in a multimodal fashion, meaning that scientists do not rely solely upon words to communicate. Instead, “they combine, interconnect, and integrate verbal text with mathematical expressions, quantitative graphs, information tables, abstract diagrams, maps, drawings, photographs, and a host of unique specialised visual genres seen nowhere else” (p. 88). Lemke also stated that visual representations do not simply illustrate the text, but supply their own unique information. This was exactly what Gibbons herself conveyed during our interview—she uses her pictures to carry information beyond the text. In the sections that follow, we share two analyses of Planet Earth. The first examines how ideas are assembled in the running text; the second shows how a single two-page spread works in a multimodal fashion.

Examining the Structure of the Running Text

In Figure 1, we have presented a generic structure—in this case, a quickly sketched figure denoting the major elements for a non-narrative nonfiction book, Planet Earth. This diagram enables us to see the stages typical of a non-narrative nonfiction book—the topic presentation, the various subtopics or descriptions, and the summary statement (Donovan & Smolkin, 2001, 2002; Pappas, 1986). In this book, as in virtually all of Gail Gibbons’s books, there is an afterword, which Pappas (1986) has identified as optional, meaning that not all information books will contain this element. In Planet Earth, as our diagram shows, there are actually two afterwords. The first is a presentation of a rock typology; the second is a collection of Earth Facts, the title Gibbons has given in this work to her trademark page 32. The generic structure not only allows us to see the basic elements, it also allows us to see which subtopics are presented in the greatest depth. We can see, for

Figure 1. Generic structure of Planet Earth.
example, that there is far more information about the earth’s layers than for any other topics, and that Gibbons has given special attention to the forces that create change. Creating diagrams such as these can support both children’s comprehension and writing of non-narrative nonfiction text (Fisher, 2001).

Examining the Pictures: How Meaning Is Made

Over the years, those working in the world of authentic texts have struggled with how to make sense of the pictures in a picture book. Nodelman (1988), for example, suggested that looking at each picture and analyzing it as a work of art separately from the subsequent pictures failed to capture the narrative quality of picture book art. He believed there must exist “a system [underlying] visual communication” (p. ix). Gunter Kress and Theo van Leeuwen (1996) published such a system, something they termed a visual grammar, based on three meaning-making functions at work in pictures—representation, interaction, and composition. Pictures re-present a reality. Pictures are also created with a viewer’s interaction in mind (just as Gibbons had told us). As viewers, we will see the reality represented differently based on various aspects of the presentation. For example, the angle of presentation, as in a bird’s eye view, can give us a very different sense of relationship to the meaning than if the picture were presented from a frontal or a snail’s eye view. Finally, the composition of pictures highlights and links certain aspects of the re-presented reality.

These can be complicated concepts, so we want to show how these ideas play out in one particular two-page spread in Planet Earth. As we’ve already mentioned, the pages are not numbered; the two-page spread we’re discussing (see Figure 2) appears in approximately the middle of the book. Its verbal content appears in Figure 1 under the Crust-related subtopics included in the Earth’s Layers topic. On the two-page spread, you can see four distinguishable boxes, which communicate compositional meaning (Kress & van Leeuwen, 1996). The first box, created by a thin, dark blue line, encircles the entire two-page spread, encircling all the verbal and visual content of the two pages. This compositional element communicates that the contents of this first box are all related, integrally connected. A thin green line creates the second box. Within this box appear two separate pictorial representations, the third and fourth boxes, respectively. These two pictures also appear within their own black-lined border, further separated from one another by a white space. Compositonally, this separateness denotes a disconnection between the content of the two representations. Still, the green line that encircles both images communicates a connection, as do the aqua shades of Gibbons’s watercolors in images, which denote seas or oceans.

Scientists divide the Earth’s crust into two parts, the oceanic crust and the continental crust. The oceanic crust lies below the oceans. It forms the ocean floor. Some oceanic crust runs underneath the continental crust, which forms the land above sea level. The crust is not one solid piece. Instead it is split into seven major pieces and many other smaller pieces, called plates. Each plate curves to fit the shape of planet Earth. Plates are made up of a thin portion of crust and a thicker portion of outer mantle that lies beneath them. These plates slowly move, because they float on top of partially molten rock. Earth’s plates are about forty miles thick under the oceans and about sixty miles thick under the continents.

Figure 2. Two-page spread from Planet Earth. (Copyright © 1995 by Gail Gibbons. All rights reserved. Reprinted with permission of HarperCollins Publishers.)
paragraph. Both of these pictures may be said to reflect part/whole relationships.

As viewers of the cross-sectional picture, our angle of sight is frontal, rather than from above or below. Our eyes move from the light blue sky with its cumulous clouds into the cross-section. At the left of the picture, we see something Gibbons has told us about—the label sea level appears immediately above a medium blue line. To its right is a dark brown, somewhat triangular section suggesting a mountain; its white label communicates that this is the continental crust, and its leftmost edge clearly dips below the aqua-colored sea. This visual representation communicates information that is not in the text, just as Gibbons talked about; nowhere in the paragraph on the crust does she verbally state that the continental crust can run beneath the ocean. Instead, she lets this picture carry that information. Below the aqua sea and also running under the dark brown continental crust is the oceanic crust, depicted by a change of color and the label oceanic crust. Beneath this multi-toned tan band appears a vibrant orange section labeled outer mantle; this color has been employed on previous pages of the book to represent the Earth’s mantle. This pictorial presentation of the mantle, though not mentioned in the first paragraph of text on this page, links the ideas of this page to those presented previously (Nodelman’s narrative aspect) and to the second paragraph of text, which describes Earth’s plates.

Our eyes next move to the second visual representation, depicting the relationships of the plates. As viewers, we once again see a frontal view. The physical map presents a sight familiar to children, continents arrayed on aqua ocean background; but the familiarity is disrupted by solid and dotted jagged black lines cutting across edges of continents and through oceans. Each of the large sections bounded by these black lines carries a label; we see the North American Plate, the Eurasian Plate, the Pacific Plate, the South American Plate, the African Plate, the Indian Australian Plate, and the Antarctic Plate. The seven major pieces are described, but not named, in the text. Gibbons includes two other labels. The first, found in the lower left-hand corner of the picture, edge of smaller plate, has an arrow that points to the dotted line to its right; the second, again using an arrow, indicates that the solid line to its left is the edge of [a] major plate.

We wondered how to assist teachers in deepening children’s connections to the visual content.

As with the previous image, colors carry significance. While the continents on the plates are predominantly green (except for the blues and whites of Antarctica and the frozen islands of North America), each green continent contains brown and orange sections representing desert lands. The climates that have produced these different regions are not discussed overtly in the text until the subtopic Earth’s Environments (see Figure 1, sub-topic Climate), but the idea is first available for discussion here.

CONNECTING CHILDREN TO NONFICTION BOOKS THROUGH VISUAL ANALYSES

In recent work (Smolkin & Donovan, 2004), we asked primary-grade teachers to read Planet Earth/Inside Out to their students. While we were chiefly interested in the types of reasoning supported by science trade books, we also wondered how teachers presented visual information to their students. What we found was a continuum. Some teachers almost never directed their students’ attention to pictures. Some made only cursory comments (“Okay, so here are some pictures”). Other teachers employed the pictures to reinforce the points made in the text (“Now here are those seven plates”). The most visually attentive teachers guided their students in understanding pictorial conventions (“Can you see the black line here? That shows we’re on a plate called the North American plate”). For the two-page spread we’ve discussed above, five of the 11 teachers said nothing about either picture, six directed their students’ attention to the map in some fashion, and only two guided their students to look at the cross section. None of the teachers commented on the way a cross-sectional diagram worked; none talked about the colors depicting meaning; none directed children’s attention to the compositional purposes of the thin dark blue and green lines.

We wondered how to assist teachers in deepening children’s connections to the visual content. In our most recent work with teachers and informational text, we provided presentations on graphic representations, such as diagrams, cutaways, and cross-sections (Moline, 1995). Once teachers had a handle on the terminology, we suggested creating a visual “scavenger hunt” for their students. Teachers brought large numbers of information books into their classrooms, many written by Gail Gibbons, and their students hunted through the books to locate examples of different visual representations. One first-grade
This work represents a first step. Having interviewed Gail Gibbons, we are particularly cognizant of her comments that her pictures carry information not found in her text. Presently, we are suggesting that teachers introduce an “In the Pictures but Not the Text” chart (see Figure 3). Such charts not only bring children’s attention to the pictures but also serve to improve children’s comprehension of the material being presented, as they must grasp the ideas in the text in order to determine whether the picture contains different ideas.

In future work, we plan to introduce teachers to Kress and van Leeuwen’s (1996) notions of interactional and compositional meanings. Here we will move beyond the paint, pen, and ink illustrations so notable in Gibbons’s illustrations to science trade books featuring photographs, such as the work of Bianca Lavies, Dorothy Hinshaw Patent, Seymour Simon, and Laurence Pringle. We hope that examining these information books, while practicing with digital photography, will heighten children’s attention to angles in visual representation so they can consider such questions as how a snail’s eye view affects us as viewers differently from a frontal view. This use of digital cameras will also allow children to consider the impact of different compositional arrangements on the visual meanings they are seeking to create.

CONCLUSION

In this article, we’ve mentioned a number of paths by which teachers can strengthen their students’ connections with informational texts. Teachers who take the time to learn
about features of nonfiction texts, the authors and illustrators of these works, and the multimodal aspects of such works are in a better position to foster children’s comprehension and composition of informational texts.

Deepening children’s encounters with high-quality nonfiction is particularly important if we wish to promote children’s ultimate success in content area studies. Working with books like Planet Earth/Inside Out provides important models for the text organization and the particular language associated with these disciplines.

Informing children about the multimodal aspects of nonfiction helps them understand the multiple dimensions of representing knowledge. Knowing about multimodal literacy enables children to think more deeply about information located in the text and information located in visual representation, as well as ways in which these two sources interact. This type of thinking further assists children’s comprehension of content texts (Mayer, 2001).

Finally, connecting children with high-quality nonfiction writers, such as Gail Gibbons, serves multiple purposes. Informing children about Gail Gibbons’s efforts to create Planet Earth encourages children to consider the amount of work and thought that goes into producing one science trade book. Children can see how Gibbons grew from a child like themselves into an author/illustrator who checks her facts, thinks about her audience, and is willing to rewrite again and again to make sure her messages are as clear as possible. We hope they will emulate her process and her products, and we suspect that they, like ourselves, will become her fascinated fans.

References

2005 NCTE Election Results

In NCTE’s 2005 elections, Kathleen Blake Yancey, Clemson University, South Carolina, was chosen vice president. Yancey will take office during the NCTE Annual Convention in November. Patsy M. Hall, Indianapolis Public Schools, Indiana, was elected to a two-year term as Elementary Level Representative-at-Large.

Elementary Section members also elected new officers. Elected to four-year terms on the Steering Committee were Debra Goodman, Hofstra University, Hempstead, New York, and Nancy J. Johnson, Western Washington University, Bellingham. Elected to the 2005–2006 Nominating Committee were Amy McClure, Ohio Wesleyan University, Delaware, chair; Nancy Creech, Arbor Elementary School, Roseville, Michigan; and Victoria Dixon-Mokeba, Lexington School District Two, Lexington, South Carolina.

On the NCTE Web site, see the “Election News” area for additional election results and the “Nominations” area for details on submitting nominations for the 2006 elections (http://www.ncte.org/about/gov/elec).

Author Biographies

Laura B. Smolkin is a professor in the Curry School of Education at the University of Virginia. Carol A. Donovan is associate professor in the College of Education at the University of Alabama.